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Abstract. Consider the Product Rate Variation problem. Given n products 1, . . . , i, . . . , n, and n

positive integer demands d1, . . . , di , . . . , dn. Find a sequence α = α1, . . . , αT , T = ∑n
i=1 di , of

the products, where product i occurs exactly di times that always keeps the actual production level,
equal the number of product i occurrences in the prefix α1, . . . , αt , t = 1, . . . , T , and the desired
production level, equal ri t , where ri = di/T , of each product i as close to each other as possible.
The problem is one of the most fundamental problems in sequencing flexible just-in-time production
systems. We show that if β is an optimal sequence for d1, . . . , di , . . . , dn, then concatenation βm

of m copies of β is an optimal sequence for md1, . . . , mdi , . . . , mdn .

Key words: Optimization, assignment problem, apportionment problem, convex functions, just-in-
time systems

1. Introduction

We study the following optimization problem. Given n products 1, . . . , i, . . . , n,
n positive integers (demands) d1, . . . , di, . . . , dn, and n convex and symmetric
functions f1, . . . , fi, . . . , fn of a single variable, all assuming minimum 0 at 0.
Find a sequence α = α1, . . . , αT , T = ∑n

i=1 di , of products 1, . . . , i, . . . , n,
where product i occurs exactly di times that minimizes

F(α) =
n∑

i=1

T∑
t=1

fi(x(α)it − ri t),

where x(α)it = the number of product i occurrences (copies) in the prefix
α1, . . . , αt , t = 1, . . . , T , and ri = di/T , i = 1, . . . , n.

This problem is known as the Product Rate Variation (PRV) problem in the
literature, see Kubiak [7], Bautista, Companys and Corominas [3, 4], and Balinski
and Shahidi [2]. The problem is fundamental in flexible just-in-time production
systems, where sequences, we refer to them as JIT sequences, that make these sys-
tems tick must keep the actual, equal x(α)it , and the desired, equal rit , production
levels of each product i as close to each other as possible all the time, Monden
[14], Miltenburg [13], Groenevelt [6], and Vollman et al [17].
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This paper focuses on the question whether there always exists an optimal cyclic
solution to the PRV problem. This question can formally be stated as follows:

Let β be an optimal sequence for d1, . . . , di, . . . , dn. Is βm, for any m � 1, an
optimal sequence for md1, . . . , mdi, . . . , mdn, where βm is a concatenation of m

copies of β?
An affirmative answer to the question will add an important theoretical justi-

fication to the usual for just-in-time systems practice of repeating relatively short
sequence to build a sequence for a longer time horizon, Monden [14] and Milten-
burg [13]. Also, either answer to the question has obvious consequences for the
computational time complexity of any algorithm for JIT sequences, see Monden
[14], Miltenburg [13], Kubiak and Sethi [9, 10], and Steiner and Yeomans [15] for
available algorithms.

The question has recently received growing attention. Bautista, Companys and
Corominas [4] have proven an affirmative answer provided that fi = f for all i,
and function f is convex and symmetric with minimum f (0) = 0. The cornerstone
of their proof is an observation that even with the constraints x(α)iT = di, i =
1, . . . , n, relaxed there still exists an optimal sequence α∗ such that x(α∗)iT =
di for all i. However, Kubiak and Kovalyov [8] have shown that this observation
no longer holds when fi’s are not identical, but still convex and symmetric with
minimum 0 at 0.

Kubiak and Kovalyov [8] have shown that if all fi functions are convex, sym-
metric and equal in the interval (0, 1), then again the answer is affirmative. How-
ever, they give an example for which the answer is negative if at least one fi

function is asymmetric.
All the affirmative answers obtained thus far rely on two crucial observations.

First, if α = βγ where β and γ are sequences for ad1, . . . , adn and bd1, . . . , bdn

respectively, with a and b being positive integers, then F(α) = F(β) + F(γ ),
see Miltenburg [13]. Second, even if one relaxes the constraints x(α)iT = di,

i = 1, . . . , n, there will still exist an optimal sequence α∗ such that x(α∗)iT = di

for all i. The latter relies on a simple exchange of two copies of different products in
a given sequence that does not increase the value of the sequence. However, since
the copies exchanged are of different products this technique may increase the
value of the sequence in general when fi’s are different. Thus the simple exchange
method will fail to work in a general case unless some exchanges are forbidden.
Consequently, a more sophisticated exchange method will be developed in this
paper to prove optimality of cyclic solutions. This method will limit exchanges to
copies of products that occupy positions at the same distance from the ends 1 and
T of a sequence, we assume for the time being that all demands are even. That is
the exchange will only be allowed between positions 1 and T , 2 and T − 1, 3 and
T − 2 etc. We show that any such an exchange does not increase the value of the
sequence, and that it is possible to carry out the exchanges so that the resulting
sequence has the number of copies of each product equally split between its two
halves. The existence of this desired distribution of product copies will be assured
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by the Hall’s theorem, see for example [12] for this theorem. Our method will rely
on the idea of ideal positions of copies of a product and the assignment problem
equivalent to the PRV problem which is based on this idea, both were introduced
by Kubiak and Sethi [9, 10].

Steiner and Yeomans [16] have proven an affirmative answer for the min-max
problem with fi(x) = |x|.

Balinski and Shahidi [2] have approached PRV from a different angle, an ax-
iomatic one. They have proposed a rule, called φ1/2, and used it to recursively
build a complete sequence. The rule has been selected from a potentially infinite
number of rules so that the sequences it builds have required properties (axioms),
one of which is that the complete sequence is cyclic. This elegant approach to the
PRV problem follows the well-known axiomatic approach to the apportionment
problem, Balinski and Young [1]. The axiomatic approach to the PRV problem
was suggested by Bautista, Companys and Corominas [3] who were first to notice
a link between the PRV problem and the apportionment problem.

The paper is organized as follows. Section 2 presents an assignment problem
equivalent to the PRV problem, and it is entirely based on Kubiak and Sethi [9, 10].
Section 3 proves special properties of the costs in this assignment problem for even
instances, that is the ones with all demands being even. Section 4 presents a three-
step transformation that splits all copies of each product equally between the two
halves of a feasible sequence for an even instance, and at the same time does not
increase the value of solution. This construction relies on the properties of the
assignment problem discussed in Sections 2 and 3. Section 5 proves that cyclic JIT
sequences are optimal. Finally, Section 6 presents conclusions and open questions.

2. Ideal Positions and Reduction to Assignment Problem

Let X = {(i, j, l)|i = 1, . . . , n; j = 1, . . . , di; l = 1, . . . , T }. Following Kubiak
and Sethi [9, 10], define cost Ci

jt � 0 for (i, j, t) ∈ X as follows:

Ci
jt =




∑Zi
j −1

l=t ψi
jl, if t < Zi

j ,

0, if t = Zi
j ,∑t−1

l=Zi
j

ψi
jl, if t > Zi

j ,

(1)

where for symmetric functions fi , Zi
j = �(2j−1)/(2ri)� is called the ideal position

for the j -th copy of product i, and

ψi
jl = |fi(j − lri) − fi(j − 1 − lri)| =

=
{

fi(j − lri) − fi(j − 1 − lri), if l < Zi
j ,

fi(j − 1 − lri) − fi(j − lri), if l � Zi
j .

(2)

Let S ⊆ X, we define V (S) = ∑
(i,j,l)∈S Ci

jl , and call S feasible if it satisfies the
following three constraints:
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(A) For each l, l = 1, . . . , T , there is exactly one pair (i, j), i = 1, . . . , n; j =
1, . . . , di such that (i, j, l) ∈ S.

(B) For each pair (i, j), i = 1, . . . , n; j = 1, . . . , di , there is exactly one l, l =
1, . . . , T , such that (i, j, l) ∈ S.

(C) If (i, j, l), (i, j ′, l′) ∈ S and l < l′, then j < j ′.
Constraints (A) and (B) are the well known assignment problem constraints, con-
straints (C) impose an order on copies of a product and will be elaborated upon
later.

Consider any set S of T triples (i, j, l) satisfying (A), (B), and (C). Let α(S) =
α(S)1, . . . , α(S)T , where α(S)l = i if (i, j, l) ∈ S for some j , be a sequence
corresponding to S. By (A) and (B) sequence α(S) is feasible for d1, . . . , dn. The
following theorem ties F(α(S)) and V (S) for any feasible S.

THEOREM 1. We have

F(α(S)) = V (S) +
n∑

i=1

T∑
t=1

inf
j

fi(j − tri). (3)

Proof. See Kubiak and Sethi [10]. �
Unfortunately, an optimal set S can not be found by simply solving the assignment
problem with constraints (A) and (B), and the costs as in (1), for which many
efficient algorithms exist, see for example Kuhn [11]. The reason is constraint (C),
which is not of assignment type. Informally, (C) ties up copy j of a product with
the j -th ideal position for the product and it is necessary for Theorem 1 to hold. In
other words, for a set S satisfying (A) and (B) but not (C) we may have inequality
in (3).

THEOREM 2. If S satisfies (A) and (B), then S ′ satisfying (A), (B) and (C), and
such that

V (S) � V (S ′),

can be constructed in O(T ) steps. Furthermore, each product occupies the same
positions in α(S ′) as it does in α(S).

Proof. See Kubiak and Sethi [10]. �

3. Properties of the Ci
jt ’s for Even Instances

In this section we study only the even instances of the PRV problem. That is
we assume that demands are of the form 2d1, . . . , 2dn for some positive integers
d1, . . . , dn, and feasible sequences have length 2T , where T = ∑n

i=1 di . We prove
important properties of the costs Ci

jt in the assignment problem introduced in
Section 2.
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LEMMA 1. Let 1 � t < Zi
j < t ′ � 2T for some i = 1, . . . , n and j =

1, . . . , 2di . If t + t ′ > 2Zi
j , then Ci

jt ′ � Ci
jt . If t + t ′ < 2Zi

j , then Ci
jt � Ci

jt ′ .
Proof. By definitions (1) and (2) we have

Ci
jt ′ =

t ′−1∑
l=Zi

j

ψi
jl =

t ′−1∑
l=Zi

j

[fi(j − 1 − lri) − fi(j − lri)]

and

Ci
jt =

Zi
j −1∑
l=t

ψi
jl =

Zi
j −1∑
l=t

[fi(j − lri) − fi(j − 1 − lri)].

Consider Ci
jt ′ − Ci

jt for t + t ′ > 2Zi
j , and Ci

jt − Ci
jt ′ for t + t ′ < 2Zi

j . In the
former case, by “matching” l = Zi

j + a from Ci
jt ′ with l = Zi

j − a from Ci
jt , for

a = 1, . . . , Zi
j − t , and by using the convexity of fi , we get

Ci
jt ′ − Ci

jt � 2

Zi
j −t∑

a=1

[fi(j − 1 − Zi
j ri) − fi(j − Zi

j ri)].

In the latter case, by “matching” l = Zi
j − b − 2 from Ci

jt with l = Zi
j + b from

Ci
jt ′, for b = 0, . . . , t ′ − 1 − Zi

j , and by using the convexity of fi , we get

Ci
jt − Ci

jt ′ � 2

t ′−1−Zi
j∑

b=0

[fi(j − Zi
j ri + ri) − fi(j − 1 − Zi

j ri + ri)].

By definition of ideal positions

Zi
j = �(2j − 1)/(2ri )�.

Thus,

j − 1 − Zi
j ri = −1/2 − εri,

j − Zi
j ri = 1/2 − εri,

j − Zi
j ri + ri = 1/2 + (1 − ε)ri,

and

j − 1 − Zi
j ri + ri = −1/2 + (1 − ε)ri,

for some 0 � ε < 1. We have

| − 1/2 − εri| = 1/2 + εri � |1/2 − εri |,
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and

|1/2 + (1 − ε)ri| = 1/2 + (1 − ε)ri � | − 1/2 + (1 − ε)ri|.
Therefore,

fi(j − 1 − Zi
j ri) � fi(j − Zi

j ri)

and

fi(j − Zi
j ri + ri) � fi(j − 1 − Zi

j ri + ri),

consequently, Ci
jt ′ −Ci

jt � 0 for t + t ′ > 2Zi
j , and Ci

jt −Ci
jt ′ � 0 for t + t ′ < 2Zi

j

and the lemma holds. �
LEMMA 2. We have

Ci
(2di+1−j)(2T +1−t ) = Ci

jt

for any i = 1, . . . , n, t = 1, . . . , 2T and j = 1, . . . , 2di .
Proof. Let us first consider ψi

(2di+1−j)(2T −l). By definition (2) we have it equal

|fi(1 − j + lri) − fi(−j + lri)|,
which by the symmetry of fi equals

|fi(j − lri) − fi(j − 1 − lri)|.
Therefore,

ψi
(2di+1−j)(2T−l) = ψi

jl.

Now, let us consider

Ci
(2di+1−j)(2T +1−t ) =

max{2T +1−t,Zi
2di+1−j

}−1∑
l=min{2T +1−t,Zi

2di+1−j }
ψi

(2di+1−j)l.

By definitions of Zi
2di+1−j and Zi

j , we have

Zi
2di+1−j = 2T − Zi

j + σ,

where σ = 0 if (2j − 1)/ri is integer and σ = 1 otherwise. Thus,

Ci
(2di+1−j)(2T +1−t ) =

2T +max{1−t,−Zi
j+σ }−1∑

l=2T +min{1−t,−Zi
j +σ }

ψi
(2di+1−j)l,
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or

Ci
(2di+1−j)(2T +1−t ) =

2T −min{t−1,Zi
j −σ }−1∑

l=2T −max{t−1,Zi
j−σ }

ψi
(2di+1−j)l. (4)

By substituting l by 2T − l on the right hand side of (4), we obtain

Ci
(2di+1−j)(2T +1−t ) =

max{t−1,Zi
j−σ }∑

l=min{t−1,Zi
j −σ }+1

ψi
(2di+1−j)(2T−l).

Since

ψi
(2di+1−j)(2T−l) = ψi

jl,

we have

Ci
(2di+1−j)(2T +1−t ) =

max{t,Zi
j−σ+1}−1∑

l=min{t,Zi
j −σ+1}

ψi
jl.

If σ = 1, then

Ci
(2di+1−j)(2T +1−t ) =

max{t,Zi
j }−1∑

l=min{t,Zi
j }

ψi
jl = Ci

jt ,

and the lemma holds. Otherwise,

Ci
(2di+1−j)(2T +1−t ) =

max{t,Zi
j+1}−1∑

l=min{t,Zi
j +1}

ψi
jl.

However, σ = 0 implies that (2j −1)/ri is integer. Consequently, by the symmetry
of fi , we have

ψi

jZi
j

= 0,

and

Ci
(2di+1−j)(2T +1−t ) =

max{t,Zi
j+1}−1∑

l=min{t,Zi
j +1}

ψi
jl =

max{t,Zi
j }−1∑

l=min{t,Zi
j }

ψi
jl = Ci

jt ,

which proves the lemma. �
The following Lemma 3 is a direct corollary of Lemma 2.
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LEMMA 3. We have

Ci
(2di+1−j)t = Ci

j (2T+1−t )

for any i = 1, . . . , n, t = 1, . . . , 2T and j = 1, . . . , 2di .

LEMMA 4. We have

Ci
j (2T +1−t ) � Ci

jt

for any i = 1, . . . , n, t = T + 1, . . . , 2T and j = 1, . . . , di .
Proof. It is obvious that the lemma holds for Zi

j � 2T + 1 − t . Otherwise
2T + 1 − t < Zi

j . Consider t ′ = 2T + 1 − t and t . We have t + t ′ > 2Zi
j since

Zi
j � T . Thus, by Lemma 1, we obtain Ci

jt � Ci
jt ′ = Ci

j (2T+1−t ). �
LEMMA 5. We have

Ci
(2di+1−j)t � Ci

jt

for any i = 1, . . . , n, t = 1, . . . , T and j = di + 1, . . . , 2di .
Proof. By Lemmas 4 and 2, respectively, we have

Ci
(2di+1−j)t � Ci

(2di+1−j)(2T +1−t ) = Ci
jt .

�

4. Folding, Shuffle, and Unfolding of Even Sequences

Consider a feasible sequence α = α1, . . . , αT , αT +1, . . . , α2T for an even instance
with demands 2d1, . . . , 2dn. We show in this section how to construct a feasible
sequence β for d1, . . . , dn such that F(α) � F(β2). The construction goes through
three steps: folding, shuffle, and unfolding. The folding replaces α by a sequence of
T ordered pairs (α1, α2T ), . . . , (αt , α2T +1−t ), . . . , (αT , αT +1). The shuffle shuffles
copies inside of each pair producing a sequence (α′

1, α
′
2T ), . . . , (α′

t , α
′
2T +1−t ), . . . ,

(α′
T , α′

T +1), where {αt, α2T +1−t} = {α′
t , α

′
2T +1−t} for t = 1, . . . , T . Finally, the un-

folding unfolds the outcome of the shuffle into a sequence α′ = α′
1, . . . , α′

T , α′
T +1,

. . . , α′
2T for 2d1, . . . , 2dn. The shuffle uses the Hall’s theorem, actually its special

case that is the existence of a complete matching in a regular bipartite graph, to
ensure that each product i occurs exactly di times in each of the two halves of
α′. We show later that this three-step construction does not increase the cost of
solution and consequently either half of α′ can be taken as the required β. This
proof is based on a crucial observation which is that the construction does not
“push” the products further from their ideal positions than they were in the original
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sequence, and thus the assignment cost does not increase. We show all details of the
construction in the next three subsections, where we denote Sα by S for simplicity.

4.1. FOLDING

Define

F(i, j, l) =




(i, j, l) if j � di and l � T ,

(i, 2di + 1 − j, l) if j > di and l � T ,

(i, j, 2T + 1 − l) if j � di and l > T ,

(i, 2di + 1 − j, 2T + 1 − l) if j > di and l > T ,

for (i, j, l) ∈ S. Let F(S) = {F(i, j, l)|(i, j, l) ∈ S}.
We observe the following.

LEMMA 6. Let t (i, j) = {l|(i, j, l) ∈ F(S)} for i = 1, . . . , n and j = 1, . . . , di .
We have

1 � |t (i, j)| � 2.

Proof. Consider (i, j, l) and (i, 2di + 1 − j, l′) from S for i = 1, . . . , n and
j = 1, . . . , di . We observe that F(i, j, l) and F(i, 2di + 1 − j, l′) are the only two
triples that can fall into t (i, j). It is worth noticing that we may have F(i, j, l) =
F(i, 2di + 1 − j, l′), which happens if l = 2T + 1 − l′. �

4.2. SHUFFLE

Define a bipartite graph G = (V1 ∪ V2, E) as follows:

V1 = {(i, j)|i = 1, . . . , n; j = 1, . . . , di}, V2 = {l|l = 1, . . . , T },
and

E = {(i, j, l)|l ∈ t (i, j); i = 1, . . . , n; j = 1, . . . , di}.
Each node in graph G = (V1 ∪ V2, E) has degree either 1 or 2, see Lemma 6.
Furthermore, if one end of an edge in E has degree 1, then the other has degree 1
as well. Let G′ = (V ′

1 ∪V ′
2, E

′) be a graph obtained by deleting all nodes of degree
1, along with connecting them edges, from G.

LEMMA 7. Graph G′ = (V ′
1 ∪ V ′

2, E
′) has two disjoint complete matchings M

and Mc such that M ∪ Mc = E′.



342 WIESLAW KUBIAK

Proof. Graph G′ is a regular bipartite graph of degree 2, and, therefore, it has a
complete matching M, see [12]. It can be observed that Mc = E′ − M is another
complete matching in G′, which proves the lemma. �
Define

L = M ∪ (E − E′)

and

R = Mc ∪ (E − E′).

We observe the following.

LEMMA 8. For any i = 1, . . . , n, we have

|{l : (i, j, l) ∈ L for some j}| = |{l : (i, j, l) ∈ R for some j}| = di.

Proof. The lemma immediately follows from the fact that there are exactly
di nodes of the form (i, j), for some j , in V1, and both L and R are complete
matchings in G by Lemma 7. �

4.3. UNFOLDING

Define

U(i, j, l) = (i, j, l),

for (i, j, l) ∈ L, and

U(i, j, l) = (i, 2di + 1 − j, 2T + 1 − l),

for (i, j, l) ∈ R.

4.4. FOLDING, SHUFFLE AND UNFOLDING RESULT IN AN ASSIGNMENT

Let FSU(S) be the set of triples obtained by the folding, shuffle, and unfolding
triples from S. We shall prove that FSU(S) satisfies (A) and (B). We first show
that the composition of folding, shuffle and unfolding is a one-to-one mapping
with respect to (i, j), Lemma 9, and with respect to l, Lemma 10.

LEMMA 9. If (i, j ′, l′), (i, j ′′, l′′) ∈ S and j ′ �= j ′′, then FSU(i, j ′, l′) = (i, j1, l1),
FSU(i, j ′′, l′′) = (i, j2, l2) and j1 �= j2.
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Proof. By contradiction. Suppose that j1 = j2. The FSU maps j ′ into either j ′
or 2di + 1 − j ′, and j ′′ into either j ′′ or 2di + 1 − j ′′. Since j ′ �= j ′′, then, without
loss of generality, we have j1 = j ′ and j2 = 2di + 1 − j ′′. Consequently, j ′ =
2di + 1 − j ′′. Thus, without loss of generality, 1 � j ′ � di and di + 1 � j ′′ � 2di .
Therefore, the folding maps j ′ into j ′ and j ′′ into j ′. Then, either (i, j ′, t) ∈ M

and (i, j ′, s) ∈ Mc in the shuffle, for some t �= s, or (i, j ′, t) ∈ E − E′ for some t .
Consequently, either FSU(i, j ′, l′) = (i, j ′, s) and FSU(i, j ′′, l′′) = (i, j ′′, 2T +
1− t), or FSU(i, j ′, l′) = (i, j ′, t) and FSU(i, j ′′, l′′) = (i, j ′′, 2T +1− t). Thus,
j1 = j ′ and j ′′ = j2 which results in a contradiction. �
LEMMA 10. If (i′, j ′, l′), (i′′, j ′′, l′′) ∈ S and l′ �= l′′, then FSU(i′, j ′, l′) =
(i′, j1, l1), FSU(i′′, j ′′, l′′) = (i′′, j2, l2) and l1 �= l2.

Proof. By contradiction. Suppose that l1 = l2. The FSU maps l′ into either
l′ or 2T + 1 − l′, and l′′ into either l′′ or 2T + 1 − l′′. Since l′ �= l′′, then,
without loss of generality, we have l1 = l′ and l2 = 2T + 1 − l′′. Consequently,
l′ = 2T +1−l′′. Thus, without loss of generality, 1 � l′ � T and T +1 � l′′ � 2T .
Therefore, the folding maps l′ into l′ and l′′ into l′. Then, either (i′, k′, l′) ∈ M and
(i′′, k′′, l′) ∈ Mc or (i′, k′, l′) ∈ Mc and (i′′, k′′, l′) ∈ M in the shuffle. Con-
sequently either FSU(i′, j ′, l′) = (i′, j1, l

′) and FSU(i′′, j ′′, l′′) = (i′′, j2, 2T +
1 − l′) or FSU(i′, j ′, l′) = (i′, j1, 2T + 1 − l′) and FSU(i′′, j ′′, l′′) = (i′′, j2, l

′).
Thus, either l1 = l′ and l2 = 2T + 1 − l′ or l1 = 2T + 1 − l′ and l2 = l′ which
results in a contradiction. �
We are now ready to show that.

LEMMA 11. FSU(S) satisfies both (A) and (B),
Proof. Lemma 9 implies (B) for FSU(S), and Lemma 10 implies (A) for

FSU(S). �
Furthermore, the composition of folding, shuffle and unfolding yields an assign-
ment with its cost not exceeding the original one as we show in the following
lemma.

LEMMA 12. We have

V (S) � V (FSU(S)).

Proof. Consider (i, j, l) ∈ S. If 1 � j � di and 1 � l � T , then FSU(i, j, l) is
either (i, j, l) or (i, 2di + 1 − j, 2T + 1 − l). Thus, FSU(i, j, l) contributes either
Ci

jl or Ci
(2di+1−j)(2T +1−l) to F(µ), where µ = α (FSU(S)). By Lemma 2, we have

Ci
(2di+1−j)(2T+1−l) = Ci

jl , thus, FSU(i, j, l) makes the same contribution to F(µ)

as (i, j, l) does to F(α).
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If 1 � j � di and T + 1 � l � 2T , then FSU(i, j, l) is either (i, j, 2T +
1 − l) or (i, 2di + 1 − j, l). Thus, FSU(i, j, l) contributes either Ci

j (2T+1−l) or
Ci

(2di+1−j)l to F(µ). By Lemma 4, we have Ci
j (2T +1−l) � Ci

jl . By Lemma 3,
we have Ci

(2di+1−j)l = Ci
j (2T +1−l), and, by Lemma 4, we get Ci

j (2T+1−l) � Ci
jl .

Therefore, Ci
(2di+1−j)l � Ci

jl , and consequently the FSU(i, j, l) contribution to
F(µ) does not exceed the (i, j, l) contribution to F(α).

If di + 1 � j � 2di and 1 � l � T , then FSU(i, j, l) is either (i, 2di +
1 − j, l) or (i, j, 2T + 1 − l). Thus, FSU(i, j, l) contributes either Ci

(2di+1−j)l

or Ci
j (2T +1−l) to F(µ). By Lemma 5, we have Ci

(2di+1−j)l � Ci
jl . By Lemma 3,

we have Ci
(2di+1−j)l = Ci

j (2T +1−l), and, by Lemma 5, we get Ci
(2di+1−j)l � Ci

jl .
Therefore, Ci

j (2T +1−l) � Ci
jl , and consequently the FSU(i, j, l) contribution to

F(µ) does not exceed the (i, j, l) contribution to F(α).
Finally, if di + 1 � j � 2di and T + 1 � l � 2T , then FSU((i, j, l)) is either

(i, j, l) or (i, 2di +1−j, 2T +1− l). Thus, FSU((i, j, l)) contributes either Ci
jl or

Ci
(2di+1−j)(2T+1−l) to F(µ). By Lemma 2, we have Ci

(2di+1−j)(2T+1−l) = Ci
jl , thus,

FSU(i, j, l) makes the same contribution to F(µ) as (i, j, l) does to F(α). �
The folding and shuffle might cause FSU(S) to fail (C). However, by Theorem 2
and Lemma 11 a feasible solution S ′ can be constructed for which

V (FSU(S)) � V (S ′). (5)

The main result of this section is as follows.

THEOREM 3. Let

α = α1, . . . , αT , αT +1, . . . , α2T ,

be a feasible sequence for 2d1, . . . , 2dn. Then, a sequence

µ = µ1, . . . , µT , µT +1, . . . , µ2T ,

where i occurs di times in the first half µ1, . . . , µT and di times in the second half
µT +1, . . . , µ2T can be constructed such that

F(µ) � F(α).

Proof. Consider sequence µ = α(S ′). By Lemma 8 and Theorem 2 each i occurs
di times in the first half of µ and di times in the second. Furthermore, by Theorem
1, Lemma 12 and (6), F(µ) � F(α) as required. �

5. Optimality of Cyclic Solutions

We are now ready to prove the main result of this paper.
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THEOREM 4. Let β be an optimal sequence for d1, . . . , dn. Then βm, m � 1, is
optimal for md1, . . . , mdn.

Proof. By induction on m. The theorem obviously holds for m = 1. Suppose
that the theorem holds for any 1 � m � k. We prove that it also holds for m = k+1.
Consider an optimal sequence α1, . . . , αmT for md1, . . . , mdn. If m is even, then
by Theorem 3, this sequence can be transformed without cost increasing into a
sequence µ1, . . . , µmT/2, µ1+mT/2, . . . , µmT , where i occurs mdi/2 times in each
of the two halves of µ. Thus, each half must be optimal for md1/2, . . . , mdn/2.
Therefore, by the inductive assumption, each half is the concatenation of m/2
copies of β, and the theorem holds for even m = k + 1. If m is odd, then con-
sider sequence βα for (m + 1)d1, . . . , (m + 1)dn. We have F(βα) = F(β) +
F(α). By Theorem 3, βα can be transformed without cost increasing into a se-
quence µ1, . . . , µ(m+1)T /2, µ1+(m+1)T /2, . . . , µ(m+1)T where i occurs (m + 1)di/2
times in each of the two halves of µ. Thus, each half must be optimal for (m +
1)d1/2, . . . , (m + 1)dn/2. Therefore, by the inductive assumption, each half is
the concatenation of (m + 1)/2 copies of β, and F(βα) = F(β) + F(α) �
(m + 1)F (β). Consequently, F(α) � mF(β) which proves the theorem for odd
m = k + 1. This proves the theorem. �

It is worth observing that the constructive folding, shuffle, and unfolding operations
(FSU ) are used in this paper to prove the existence of optimal cyclic sequences
rather than to actually construct optimal sequences. The latter can be obtained by
first calculating the greatest common divisor m of d1, . . . , dn, then by using the
algorithm given in [9, 10] to obtain an optimal sequence for d1/m, . . . , dn/m, and
finally by concatenating the sequence m times to construct an optimal sequence for
the original demands d1, . . . , dn.

6. Conclusions

We have proven that optimal JIT sequences are cyclic. This result provides an
important theoretical support to the usual for just-in-time systems practice of re-
peating relatively short sequence to build a sequence for a longer time horizon,
Monden [14] and Miltenburg [13]. It has also important consequences for the
computational time complexity of all existing algorithms for PRV. All these time
complexities depend on the magnitude of demands d1, . . . , dn and consequently
on the magnitude of number T . The only known polynomial time, with respect to
T and n, optimization algorithm for JIT sequences has time complexity O(T 3),
see [9, 10]. Theorem 4 makes it possible to reduce each of these demands by the
factor of m, where m is the greatest common divisor of numbers d1, . . . , dn, in
the computations of optimal JIT sequences. The Euclid’s algorithm can find m in
O(n log T ) steps, see for instance [5].
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Furthermore, Theorem 4 is a step forward in tackling theoretically intriguing
question of how succinct the encoding of optimal JIT sequence can be ? The answer
to this question also pertains to the computational complexity of the PRV prob-
lem since the input of the problem can be made very short by encoding numbers
d1, . . . , dn using O(

∑n
i=1 log di) bits. This encoding, however, makes all polyno-

mial time, with respect to T and n, algorithms for the PRV problem pseudopoly-
nomial time algorithms. Therefore, the question, see Kubiak [7], whether there is
an algorithm with time complexity bounded by a polynomial function of log T and
n remains open.
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